

 the mechanism by which they replace hydrogen, which is the same for all

Di- and Polysubstitution

- Existing groups on a benzene ring influence further substitution in both **orientation** and rate
- Orientation:
 - certain substituents direct preferentially to ortho & para positions; others direct preferentially to meta positions
 - substituents are classified as either

ortho-para directing..... or meta directing

										٨	
Effects of substitution on further electrophilic aromatic substitution										\mathbb{N}	
Ortho-Para Directing	Strongly activating	-NH ₂		-NR2	-ÖH	0			Real Fast] [
	Moderately activating	–ŇHCR	−NHCAr	−ÖR	–ÖCR	−ÖCAr			Pretty fast		
	Weakly activating	-R							Kinda slow		
	Weakly deactivating	—Ë:	Ül:	− <u>₿</u> r:	- <u>"</u> :				Pretty slow		
eta recting	Moderately deactivating Strongly	0 -CH	O I -CR	0 -СОН	O I -COR	O I - CNH ₂	0 - SOH 0	−C≡N	Slow		
Diu	deactivating	-NO ₂	-NH3 ⁺	-CF ₃	-CCl ₃	<u>.</u>			Real Slow		
Chemistry 328N											

Di- and Polysubstitution

Some observations

- Alkyl groups, phenyl groups, <u>and</u> all groups in which the atom bonded to the ring has an *unshared pair of electrons* are ortho-para directing. All other groups are meta directing.
- All ortho-para directing groups <u>except</u> the halogens are activating toward further substitution. The halogens are weakly deactivating

Factors to Consider order of introduction of substituents to ensure correct orientation Friedel-Crafts reactions (alkylation, acylation) cannot be carried out on strongly deactivated aromatics

